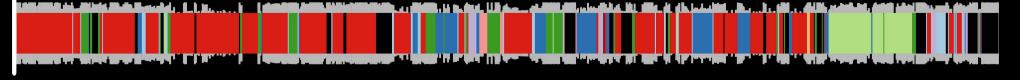


Neural Screenomics: Decoding Motivational States from Individuals' Digital Trajectories

Rinseo Park¹, Yung-Ju (Stanley) Chang², Byron Reeves¹, & Nilam Ram¹

¹ Stanford University


² National Yang Ming Chiao Tung University

ICA 2024 Mobile Communication HIGH DENSITY: Navigating Ubiquitous Connectivity 6/21/2024 Fri 12:00 – 1:15 PM

 $Stanford \,|\, {\tt The \ Change \ Lab}$

SCREENOME Fragments of Media Use

Reeves, Robinson, & Ram, 2020

Neural Screenomics: New Way of Defining Motivations

ano			
;4]0 ;30	/	\mathbf{h}	
0			
-55			
-70 (m¥)	H	yperpol	- LARI

Continuous

- Higher *frequency* (vs. UG) and longer study *duration* (vs. MC)
- Pushing further task-switching research by studying moment-tomoment (vs. UG) changes over time (vs. MC)

Multiple "screen" neurons

- A scalable way of defining motivational dimensions
- Reconciling explanatory (MC, 2 fixed) and exploratory (UG, 7 optimal)
 frameworks to examine high-dimensional screen behavior

Context-specific

- Can identify and describe *when* and *how strongly* each motivational state is activated under certain contexts
- Revealing **when, how, and why** people are switching apps so quickly

${\small Stanford}\,|\,{\small {\tt The Change Lab}}$

Motivations for Media Task Switching

- Focusing on external factors
- How do media activate motivational (appetitive/aversive) systems?
- Lang (2006); Yeykelis et al. (2018)

- Focusing on **internal factors**
- How do users select media to fulfill their needs or dispositional motives?
- Katz et al. (1973); Wang & Tchernev (2012)

 $Stanford \,|\, {\tt The \ Change \ Lab}$

New Way of Defining Motivations

Continuous

Multiple "screen" neurons

Context-specific

 $Stanford \,|\, {\tt The \ Change \ Lab}$

Highlighting the Role of Timescale

Table 1. Timescales of assessment in task switching research.

Theory	Evenula	Timescale of Assessment		
	Example	Frequency	Duration	
Motivated Cognition	Screen shots every 5 seconds for 4 days (Yeykelis, Cummings, & Reeves, 2018)	High (e.g., 5 seconds)	Low (e.g., 4 days)	
Uses and Gratifications	Self-reports 3 times per day for 4 weeks (Wang & Tchernev, 2012)	Low (e.g., 8 hours)	High (e.g., 4 weeks)	

Note: Levels of assessment frequency/duration labeled as "High" or "Low."

Highlighting the Role of Timescale

Table 1. Timescales of assessment in task switching research.

Theory	Evenula	Timescale of Assessment		
	Example	Frequency	Duration	
Motivated	Screen shots every 5 seconds for 4 days (Yeykelis, Cummings, & Reeves, 2018)	High	Low	
Cognition		(e.g., 5 seconds)	(e.g., 4 days)	
Uses and Gratifications	Self-reports 3 times per day for 4 weeks	Low	High	
	(Wang & Tchernev, 2012)	(e.g., 8 hours)	(e.g., 4 weeks)	

RQ: How to decode motivational states from fast-changing screen use over time?

Data: Screenomics

- Every 5 seconds for 14 days, 36 participants were instructed to submit smartphone screenshots.
- Each screenshot was auto-annotated with respect to **17+ app categories** and self-annotated with respect to **2 motivational states: (1) killing time, (2) available for viewing notifications.**

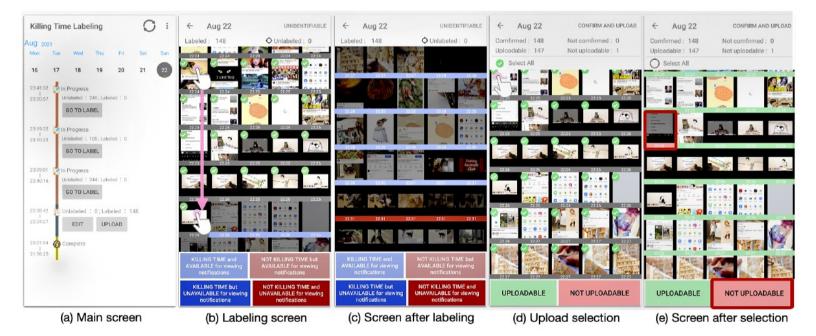
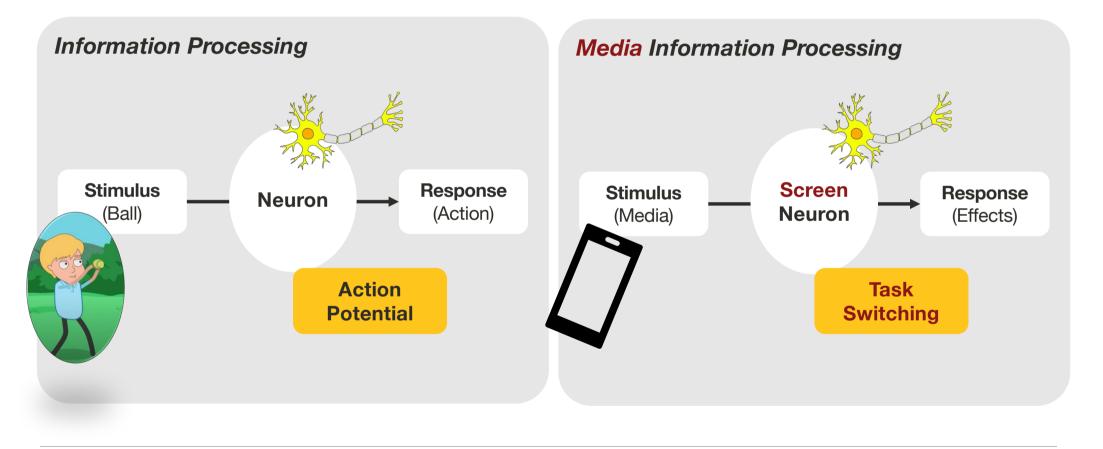


Figure 1: User interfaces for the main functions of the Killing Time Labeling application

Stanford | The Change Lab

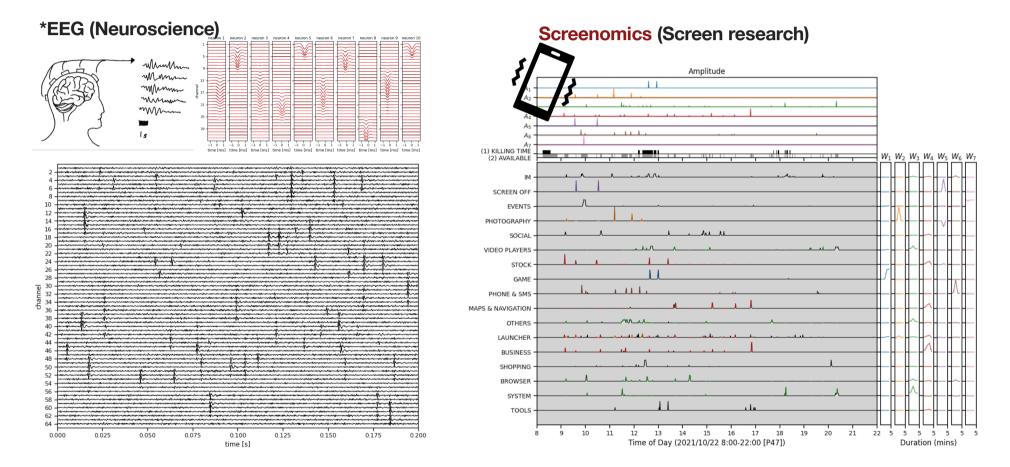
Chen et al. (2023)

New Way of Defining Motivations


Continuous

Multiple "screen" neurons

Context-specific


 $Stanford \,|\, {\tt The \ Change \ Lab}$

Parallels with Neuroscience: Neuron

Stanford | The Change Lab

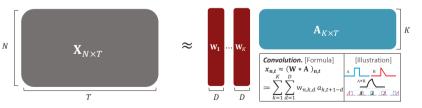
Parallels with Neuroscience: Neural Signals

Stanford | The Change Lab

*EEG (electroencephalogram)

Parallels with Neuroscience: Spike Sorting

• Spike sorting with EEG

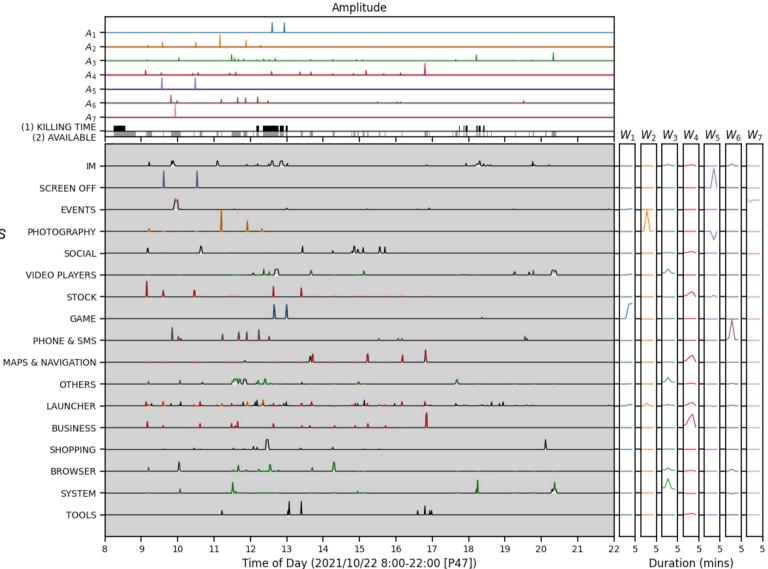

- Widely used to identify spikes (action potentials) and the underlying neurons from multi-channel neural recordings.
- Discover how *neural activity* occurs across different brain regions.
- Discover how *latent states of neural activity* change over time.

Spike sorting with Screenomics

- Screenomics show how individuals having different motivations use and engage with different apps.
- Thus, we aim to identify these (1) behavioral spikes and
 (2) underlying screen neurons as motivations.

Kilosort (Pachitariu et al., 2016)

- Convolutional Non-negative Matrix Factorization (Conv-NMF)
- Data $\mathbf{X}_{N \times T} \approx$ Feature matrix $\mathbf{W}_{N \times K \times D} \star$ Coefficient matrix $\mathbf{A}_{K \times T}$


Stanford | The Change Lab

Smaragdis (2004)

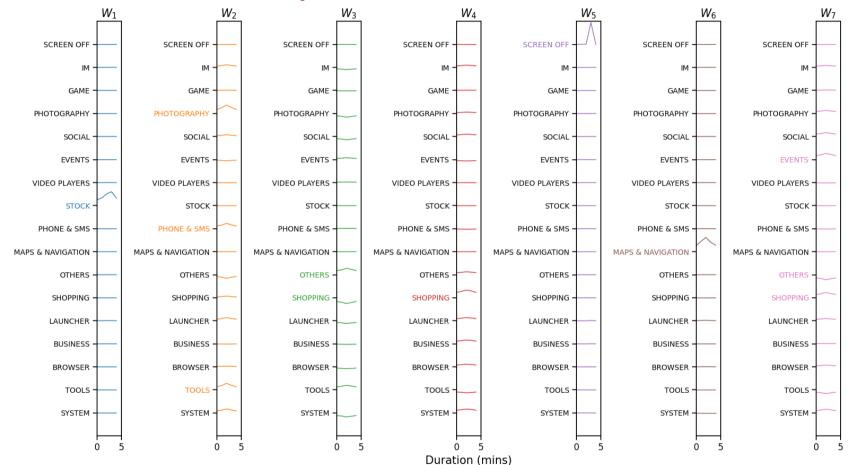
Results

1-person, 1-day Seven neurons (R² = .48)

- The right panel showcases the spatial waveforms W of these neurons, given that the duration of motivational states is under 10 minutes (D = 10)
- The top panel showcases their temporal amplitudes A that are associated with contexts of media use.
- Each color corresponds to a neuron, overlaid when the neuron's spatial wavelets are significantly higher than zero (using top 95th percentile).

 $Stanford \,|\, {\tt The \ Change \ Lab}$

New Way of Defining Motivations


Continuous

Multiple "screen" neurons

Context-specific

Stanford | The Change Lab

Screen Neurons as Context-specific Motivations

36-persons, 93-days Seven neurons ($R^2 = .34$)

Stanford | The Change Lab

Statistical Relationships with Self-reported Motivations

	Number of	Regression coefficients			
Motivation state		(1) Killing time		(2) Available	
	firing times	FE	RE	FE	RE
Interest		-2.06***	0.61	-1.841***	0.50
Intercept		(0.10)		(0.08)	
Novran 1 (Staal)	249	0.24**	0.25	0.241***	0.17
Neuron 1 (Stock)	348	(0.09)		(0.07)	
Nouron 2 (Massangar)	6015	0.58***	0.44	0.891***	0.67
Neuron 2 (Messenger)	6915	(0.08)		(0.12)	
Nouron 2 (Others)	5179	-0.43***	0.49	-0.381***	0.61
Neuron 3 (Others)	5428	(0.09)		(0.11)	
Nouron 4 (Shanning)	9263	0.96***	0.58	1.281***	0.70
Neuron 4 (Shopping)		(0.10)		(0.12)	
Novron 5 (Somoon off)	587	0.09***	0.04	0.121***	0.03
Neuron 5 (Screen off)		(0.01)		(0.01)	
Nouron 6 (Mong & Novigation)	878	0.14***	0.07	0.311***	0.16
Neuron 6 (Maps & Navigation)		(0.02)		(0.04)	
Nouron 7 (Events)	7776	1.62***	0.88	1.871***	1.09
Neuron 7 (Events)	7776	(0.15)		(0.18)	
AIC		525655		581928	
BIC		525839		582111	

Table 2. Comparison of inferred and observed motivational states.

Stanford | The Change Lab

36-persons, 93-days Seven neurons ($R^2 = .34$)

Neural Screenomics: New Way of Defining Motivations

ano			
;4]0 ;30	/	\mathbf{h}	
0			
-55			
-70 (m¥)	H	yperpol	- LARI

Continuous

- Higher *frequency* (vs. UG) and longer study *duration* (vs. MC)
- Pushing further task-switching research by studying moment-tomoment (vs. UG) changes over time (vs. MC)

Multiple "screen" neurons

- A scalable way of defining motivational dimensions
- Reconciling explanatory (MC, 2 fixed) and exploratory (UG, 7 optimal)
 frameworks to examine high-dimensional screen behavior

Context-specific

- Can identify and describe *when* and *how strongly* each motivational state is activated under certain contexts
- Revealing **when, how, and why** people are switching apps so quickly

${\small Stanford}\,|\,{\small {\tt The Change Lab}}$

Acknowledgement

Neural Screenomics

Decoding Motivational States from Individuals' Digital Trajectories

Rinseo Park¹, Yung-Ju (Stanley) Chang², Byron Reeves¹, & Nilam Ram¹

¹ Stanford University

² National Yang Ming Chiao Tung University

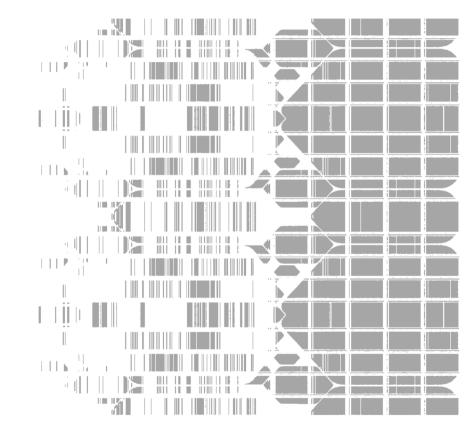
Special Thanks to:

 The Change Lab¹ (Lavender Chen, Yikun Chi, Tanner Christensen, Julia Fischer, Zhenchao Hu, Christopher Kelly, Michelle Ng, Wee Qin Ng, Sam Serrano, Charles Shi, Emma Talley, A Garron Torres, & Nilam Ram)

> NATIONAL YANG MING CHIAO TUN

- COMM 372 Seminar¹ (Yikun Chi, Zhenchao Hu, Monique Santoso, Noah Vinoya, & Byron Reeves)
- Mobile and Ubiquitous Interaction Lab²
- Korea Foundation for Advanced Studies
 KFAS

Contact: Rinseo Park (<u>rinseo@stanford.edu</u>) The Change Lab (thechangelab.stanford.edu)


Stanford | The Change Lab

ICA 2024 Mobile Communication HIGH DENSITY: Navigating Ubiquitous Connectivity 6/21/2024 Fri 12:00 – 1:15 PM

Stanford | The Change Lab

E.O.D

Measures: KTL study

Table 1: Summary of data collection

Uploaded	Not uploaded	Total
606,760 (51.1%)	29,160 (2.5%)	635,920 (53.6%)
135,380 (11.4%)	2,101 (0.2%)	137,481 (11.6%)
202,327 (17.1%)	17,081 (1.4%)	219,408 (18.5%)
118,313 (10.0%)	9,071 (0.8%)	127,384 (10.7%)
0 (0.0%)	66,152 (5.6%)	66,152 (5.6%)
1,062,780 (89.6%)	123,565 (10.4%)	1,186,345 (100.0%)
	606,760 (51.1%) 135,380 (11.4%) 202,327 (17.1%) 118,313 (10.0%) 0 (0.0%)	606,760 (51.1%) 29,160 (2.5%) 135,380 (11.4%) 2,101 (0.2%) 202,327 (17.1%) 17,081 (1.4%) 118,313 (10.0%) 9,071 (0.8%) 0 (0.0%) 66,152 (5.6%)

Table 2: The sensor features used in the study

	Phone Context	Current Characteristics	Current session characteristics (accumulated up to the current screenshot record)
	Transportation Mode	Physical activity (i.e., not moving, on foot, in vehicle, or on bicycle)	Cumulative time of {not moving, on foot, in vehicle, on bicycle}
		Was moving (i.e., on foot, in vehicle, or on bicycle)	Majority of physical activity
	Type of Day	Day of the week (0-6)	
	Type of Day	Was weekend (i.e., Saturday, Sunday)	
When	Time of a Day	Hour of the day in 24-hour notation (0-23)	
	Time of a Day	Was meal time (11:00 a.m12:59 p.m., 5:00 p.m6:59 p.m.)	
	Battery Status	Phone battery level	{AVG, STD, MIN, MAX, MED} Phone-battery level
		Phone was charging / not charging	Charging count
		If charging over AC or USB	Cumulative charging time
	Screen Time		{AVG, STD, MIN, MAX, MED, SUM} Screen time
	Screen Orientation	Portrait / landscape mode	
	Foreground App	Name of the app in the foreground	Count and frequency of app switches
What		Package name of the app in the foreground	Count of used apps
		Category of the app in the foreground	Cumulative usage time of the 15 most frequently used app cat- egories and all remaining app categories combined into one category group.

Measure: Foreground time spent on each of (16+1) app categories

Stanford | The Change Lab

Chen et al. (2023)

Figure 1: Synthetic dataset

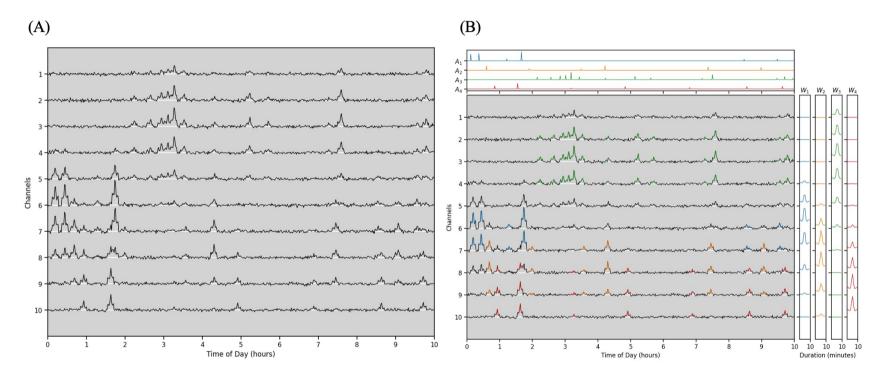


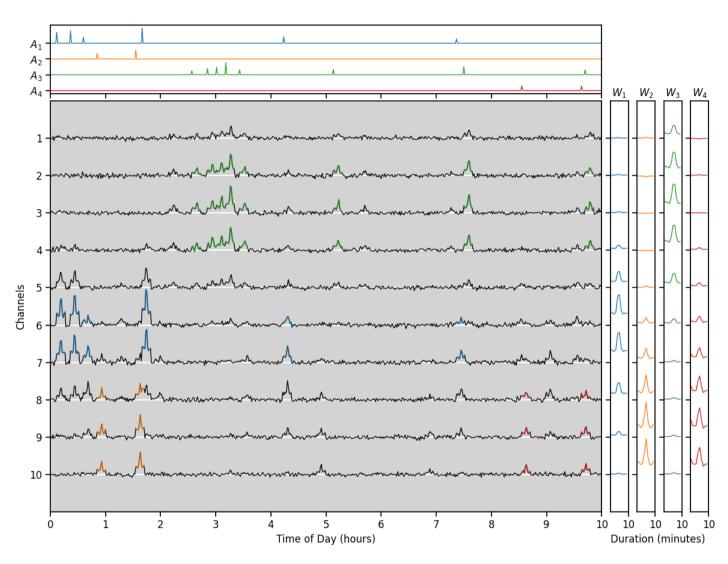
Figure 1. An illustrative example of spike sorting applied to smartphone sensing data.

Note: **Panel A** depicts the observed multi-channel time-series data, capturing screen time across 10 applications. **Panel B** depicts the overlay of 4 ground-truth neurons that were used to generate the data. The right panel showcases the spatial waveforms **W** of these neurons, assuming that the duration of motivation states is under 10 minutes. The top panel showcases their temporal amplitudes **A** that are associated with contexts of media use. Each color corresponds to a neuron, overlaid when the neuron's spatial wavelets are significantly higher than zero (using top 95th percentile).

Stanford | The Change Lab

Figure 2A: Synthetic dataset with 4 neurons $(R^2 = .75)$

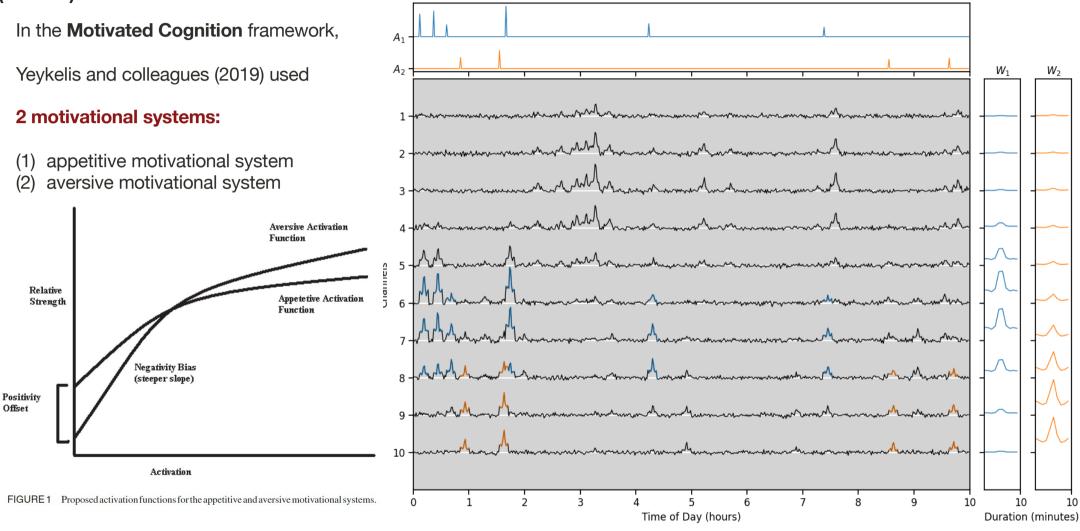
In the Uses & Gratifications framework,


Wang & Tchernev (2012) used

4 categories (of uses & gratifications):

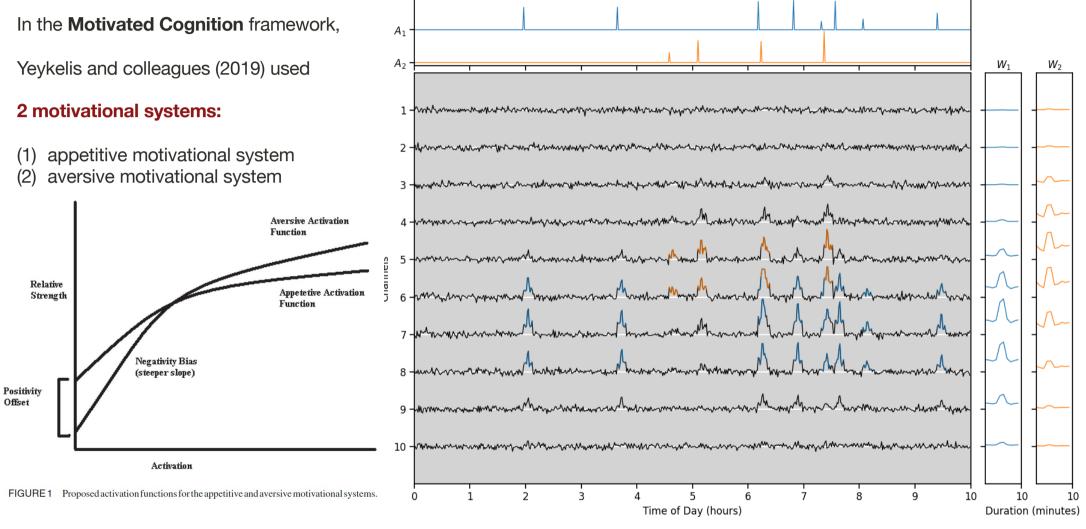
- (1) emotional
 - fun/entertainment
 - to relax/kill time
- (2) cognitive
 - information
 - study/work

(3) social


- personal
- professional
- (4) habitual
 - habits/background noise

$Stanford \,|\, {\tt The \ Change \ Lab}$

Wang & Tchernev (2012)


Figure 2B: Synthetic dataset with 2 neurons $(R^2 = .44)$

 $Stanford \,|\, {\tt The \ Change \ Lab}$

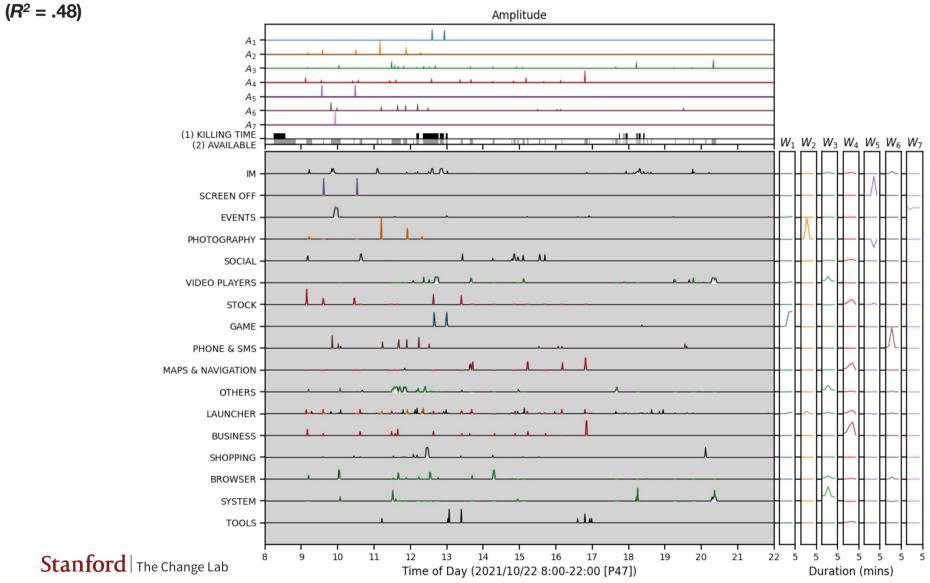
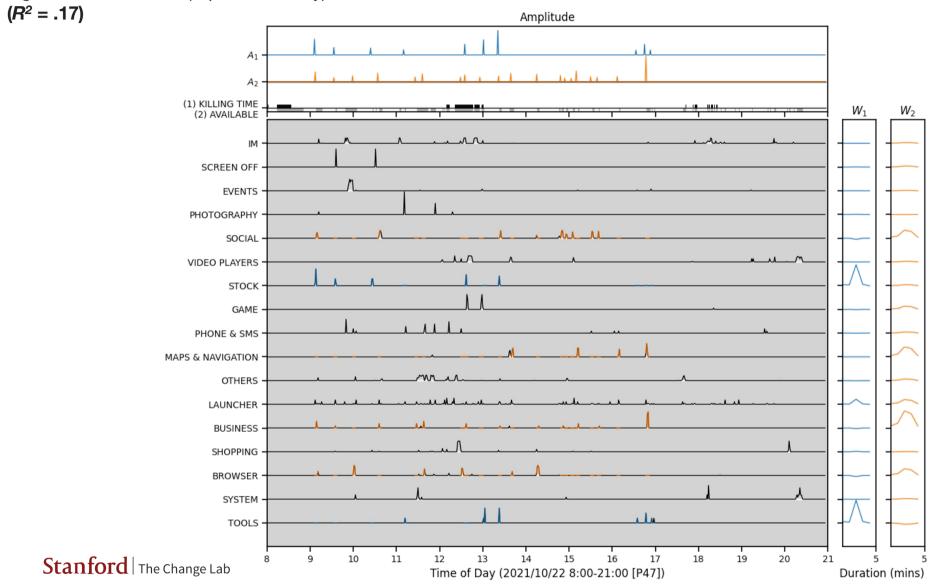

Lang, Shin, & Lee (2005)

Figure 2C: Another synthetic dataset with 2 neurons w/ Constraints ($R^2 = .77$)



Stanford | The Change Lab

Lang, Shin, & Lee (2005)

Figure 3: KTL dataset (1-person, 1-day) with 7 neurons

Figure 3: KTL dataset (1-person, 1-day) with 2 neurons